Explore the Nano World 

Mar. 2019:Congratulations to Kaiqin for winning the Third Place in AWWA NJ 84rd Annual Conference!

​​​Mar. 2019: Congratulations to Wanyi  for successfully defending her dissertation!

 Wen's Research Group​

May. 2019:Congratulations to Xiaonan and Kaiqin for winning Poster Competition of the NJWEA Conference!

Wen Zhang

Principal Investigator
Associate Professor

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: 

 1. Significance
The
Lithium ion batteries (LIBs) market is expected to grow at a CAGR of 16.2% between 2018 and 2024 ( USD 37.4 billion in 2018 to USD 92.2 billion by 2024) thus, well-defined recycled,recovered  procedures are needed to prevent environment contamination and global resource problem. 

                               Comparison


Increasing the reaction temperature can speed up the reaction rate, however when exceeding to a certain, too high temperature cause the evaporation of organic acid.
The reaction time 
has high
relation with the chemical reaction rate which means cathode materials need enough time to proceed ionic migration and chemical reaction.

Kaiqin Dong, Likun Hua, Heradia Guerrero Paula Andrea, Garcon Sarah Louise, Lucia Rodriguez-Freire, Wen Zhang*
John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology (NJIT)
*Corresponding author: Phone: (973) 596-5520; Email: wen.zhang@njit.edu; Address: 323 Martin Luther King Blvd. Newark, NJ 07102, United States 

2. The Need for Green Chemistry

• Inorganic acids [Nitric acid, Hydrochloric acid]: usually strong acid; corrosive hazard; release toxic gases like Cl2, SO2  and NOx; waste acid solution is harmful.
• Organic acids [Citric acid, malic acid]: weaker than inorganic acids but stronger chelating agents; avoid secondary pollution; selective leaching of metal; easy to reuse.

          Problem Statement and Significance 


1. He,et al.  Vol. 64,2017. doi:10.1016/j.wasman.2017.02.011.
2. Yu
,et al.  Vol. 215,2019. doi:10.1016/j.seppur.2019.01.027.
3. Golmo, et al. Resources, Conservation and Recycling 136 (2018): 418-35.
4. He, et al. ACS Sustainable Chemistry & Engineering, no. 1 (2017): 714-21.

                         Leaching Efficiency

                            Acknowledgments

Green Chemical processes to recovery Li and Co from spent Lithium-ion batteries

The authors gratefully acknowledge funding support from the US Environmental Protection Agency Pollution Prevention (P2) program (No: NP96259118-0) and NJIT Undergraduate Research and Innovation (URI) phase II Seed Grant.  

                                 References

                         Materials & Methods

Fig.2. (a) chemical reaction for the lithium-ion battery when discharging. (b) The structure of 18650 type Lithium ionbattery . 

Increasing the concentration of acid which could increase the concentration of H+ to strength the leaching ability of LiCoO2.  However, when concentration exceeding to a certain extent, too high H+ prohibit the form of the ligands.

H2O2 can provide oxygen ion to oxide divalent cobalt to one-valent cobalt further to increase the dissolution of metal ion with ligands.