Jun. 2021: Professor Wen Zhang was invited to report for RCR seminar about seeking sustainable pathways for spend lithium-ion batteries.

Explore the Nano World 

Aug. 2021: Dr. Wen Zhang’s team membersjoined the ACS Fall 2021 in Atlanta and presented their research.  

Jul. 2021: Dr. Zhang’s group membersparticipated the first 2021 virtual CAPEES e-poster competition on July 17, 2021.Dr. Weihua Qingwon the best poster award. 

 Wen's Research Group​

Wen Zhang

Principal Investigator
Associate Professor

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: 

Photocatalytically Reductive Defluorination of Perfluorooctanoic Acid (PFOA) using Pt/La2Ti2O7 Nanoplates: Experimental and DFT Assessment

Dr. Wen Zhang’s group in New Jersey Institute of Technology published a video article in Journal of Hazardous Materials (JHM). They reported the use of Pt-doped lanthanum titanate nanoplate catalysts to achieve the reductive defluorination of perfluorooctanoic acid and used Density functional theory (DFT) calculation and analysis of the influence of Pt doping and energy band structure on the interface electron transfer and degradation pathways. Perfluorooctanoic acid (PFOA) is very difficult to be degraded due to its strong carbon-fluorine bond. Photocatalytic degradation technology has attracted more and more attention due to its potential high efficiency in the degradation and mineralization of refractory organic pollutants. As reported in this paper, doping platinum nanoparticles on the surface of lanthanum titanate can change its band structure and further improve the photocatalytic activity due to enhanced charge separation. Methanol as an electron donor and sacrificial reagent significantly promotes the photocatalytic reduction and degradation of perfluorooctanoic acid. Density functional theory is a powerful predictive method used to determine the thermodynamics and kinetics of chemical reactions. It has been successfully applied to explain the conversion mechanism and model the conversion pathways of organic pollutants. In this paper, the DFT calculations proved that Pt dopants changed the impurity energy state and narrowed the band gap of La2Ti2O7, and further calculations verified the degradation mechanism of the hydrodefluorination of PFOA molecules.


Link: https://www.sciencedirect.com/science/article/abs/pii/S0304389421014175