Wen Zhang, Ph.D., P.E., BCEE

Principal Investigator

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: 

Dr. Wen Zhang’s group in New Jersey Institute of Technology presented a novel approach to regulate the local gas-liquid microenvironment within the catalyst layer by blending hydrophobic polytetrafluoroethylene (PTFE) nanoparticles into the electrocatalyst layer (CuO nanoparticles) to decouple the electron- and phase-transfer processes and improve spillover and transport of gaseous products from the catalytic sites. Commercial CuO nanoparticles were selected as a model electrocatalyst as they have been commonly used in electrochemical nitrate reduction reaction (NO3RR). PTFE nanoparticles in the catalyst layer are expected to serve as dispersed hydrophobic “islands” that dynamically capture and store gaseous products (NH3, N2, and H2) from the neighboring active sites of CuO nanoparticles. This composite catalyst was deposited onto a commercial gas-diffusion electrodes (GDEs) substrate to further regulate the migratory direction of the gas/bubbles, eliminating the bubble induced third phase sandwiched between the cathode and the solution. The NH3 partial current density normalized by the electrochemically active surface area (ECSA) increases by nearly a factor of 17.8 from 11.4 ± 0.1 to 203.3 ± 1.8 mA cm−2ECSA. Atomic force microscopy−scanning electrochemical microscopy (AFM/SECM), density functional theory (DFT) calculations, ab-initio molecular dynamics (AIMD), and electrochemical quartz crystal microbalance (eQCM) were used to reveal and analyze the mechanisms of transfer processes the gaseous molecules of NH3 and H2 from the catalyst surface onto PTFE nanoparticles. This novel regulation of the gas–liquid microenvironment provides critical insights into the triple-phase interface of electrocatalysts in NO3RR. This study is supported by the NSF PFI-TT project (Award number: 2016472) and the NSF/BSF project (Award number: 2215387). The authors also acknowledge the support of The Brook Byers Institute for Sustainable Systems, Hightower Chair, and the Georgia Research Alliance at the Georgia Institute of Technology.

Decoupling Electron- and Phase-Transfer Processes to Enhance Electrochemical Nitrate-to-Ammonia Conversion by Blending Hydrophobic PTFE Nanoparticles within the Electrocatalyst Layer 





高佳楠  新泽西理工学院土木与环境工程系环境工程专业在读博士。2020年毕业于青岛理工大学环境与市政工程学院,获得学士及硕士学位。主要研究方向为电催化功能材料的表界面设计与合成,研究领域主要包括水净化、资源回收、膜污染和表面反应行为的评估。以第一作者在Environmental Science & Technology, Advanced Energy Materials, Applied Catalysis B: Environmental等期刊发表论文6篇,论文被引用次数已超过500次。曾获美国化学学会(ACS)Heh-Won Chang PhD Fellowship in Green Chemistry,Environmental Chemistry Graduate Student Award,Division of Environmental Chemistry (ENVR) Certificate of Merit Award等奖项。

Explore the Nano World 


新泽西理工大学土木与环境工程系张文教授课题组近期于Advanced Energy Materials发表研究论文, 提出了一种通过将疏水性聚四氟乙烯(PTFE)纳米粒子混合到电催化剂层(CuO纳米粒子)中来调节催化剂层内局部气-液微环境的新方法,以解耦电子转移-相转移过程并改善气态产品从催化位点的溢出和运输。该研究选择商购CuO 纳米粒子作为模型电催化剂,因为它们通常用于电化学硝酸盐还原反应 (NO3RR)。 催化剂层中的 PTFE 纳米颗粒有望充当分散的疏水“岛”,动态捕获和储存来自 CuO 纳米颗粒相邻活性位点的气态产物(NH3、N2 和 H2)。将该复合催化剂沉积在商购气体扩散电极 (GDE) 基底上,以进一步调节气体产物的迁移方向,消除夹在阴极-溶液-阳极之间的气泡,进一步降低了能量浪费。 由电化学活性表面积 (ECSA) 归一化的 NH3 局部电流密度增加了近 17.8 倍,从 11.4 ± 0.1 增加到 203.3 ± 1.8 mA cm−2ECSA。 原子力显微镜-扫描电化学显微镜 (AFM/SECM)、密度泛函理论 (DFT) 计算、分子动力学模拟(AIMD) 和电化学石英晶体微天平 (eQCM) 用于揭示和分析NH3 等气态分子从催化位点到PTFE 纳米粒子上转移过程和机制。这项策略为 NO3RR 和其他涉及气态产物生成的电化学反应(如析氢,析氧反应)中电催化层的局部微环境调控提供了重要的见解。 本研究得到 NSF PFI-TT 项目(奖励编号:2016472)和 NSF/BSF 项目(奖励编号:2215387)的支持。作者还感谢Brook Byers Institute for Sustainable Systems, Hightower Chair和 Georgia Research Alliance at the Georgia Institute of Technology的支持。


 Wen's Research Group​