Wen Zhang, Ph.D., P.E., BCEE

Principal Investigator
Professor

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: 

第一作者:马清泉

通讯作者:张文

通讯单位:新泽西理工学院

DOI: https://doi.org/10.1002/wer.10983

 

文章摘要

新泽西理工大学土木与环境工程系张文教授课题组近期于Water Environment Research发表基础研究论文, 揭示了商用反渗透和纳米过滤膜对全氟烷基化物(PFAS)的去除效果。由于PFAS的大量应用导致它们广泛分布在水生态系统中,包括饮用水和自然水源。在不同的PFAS处理或分离技术中,纳米过滤(NF)和反渗透(RO)都能对水中PFAS有较高的去除效率(>95%),然而,这两种技术都受到许多内在和外在因素的影响。该研究评估了两种商业BW30和NF90膜在不同操作条件(不同过膜压力和初始PFAS浓度和链长)和不同进料溶液参数(例如pH, NaCl浓度和有机物质浓度)。研究进一步使用主成分分析(PCA)探讨了分子量、膜特性、进料水基质和操作条件与PFAS截流的相互关系。结果证实,尺寸排除是RO和NF对PFAS的主要截流机制,同时,当PFAS分子的尺寸小于NF膜孔径时,静电排斥作用也很重要。该研究得到了NSF 项目 1822130的支持,该项目是在NSF膜科学、工程和技术产业/大学合作研究中心进行的。作者还感谢项目相关的W.L. Gore&Associates的Uwe Beuscher和3M的Albert Wu的支持,以及MAST中心工业咨询委员会(IAB)成员的支持。

商用纳米膜和反渗透膜对去除PFAS的评估:跨膜压力和进水参数的影响

Explore the Nano World 

 Wen's Research Group​

Evaluation of Commercial Nanofiltration and Reverse Osmosis Membrane Filtration to Remove PFASs: Effects of Transmembrane Pressures and Water Matrices

Dr. Wen Zhang’s group in New Jersey Institute of Technology presented fundamental research to reveal the Per- and polyfluoroalkyl substances (PFAS) rejection with commercial Reverse Osmosis and nanofiltration membrane. PFAS are now widely found in aquatic ecosystems, including sources of drinking water and portable water, due to their increasing prevalence. Among different PFAS treatment or separation technologies, nano-filtration (NF) and reverse osmosis (RO) both yield high rejection efficiencies (>95%) of diverse PFAS in water, however, both technologies are affected by many intrinsic and extrinsic factors. This study evaluated the rejection of PFAS of different carbon chain length (e.g., PFOA and PFBA) by two commercial RO and NF membranes under different operational conditions (e.g., applied pressure and initial PFAS concentration) and feed solution matrixes, such as pH (4~10), salinity (0~1000 mM NaCl), and organic matters (0~10 mM). They further performed principal component analysis (PCA) to demonstrate the interrelationships of molecular weight (213~499 g·mol−1), membrane characteristics (RO or NF), feed water matrices, and operational conditions on PFAS rejection. The results confirmed that size exclusion is a primary mechanism of PFAS rejection by RO and NF, as well as the fact that electrostatic interactions are important when PFAS molecules have sizes less than the NF membrane pores. This study is supported by the NSF Award IIP 1822130 carried out in the NSF Industry/University Cooperative Research Center for Membrane Science, Engineering and Technology. The authors also acknowledge the project mentors, Uwe Beuscher from W.L. Gore & Associates, Inc. and Albert Wu from 3M as well as support from the MAST center’s industrial advisory board (IAB) members.