Dr. Wen Zhang’s group at New Jersey Institute of Technology published a paper

(DOI: https://pubs.acs.org/doi/10.1021/acsestengg.3c00571) in EST Engineering that analyzed the anode’s capability and stability for perfluorocarboxylic acids with electrochemical oxidation. Electrochemical Advanced Oxidative Processes (EAOPs) offer promising pathways for the eradication of persistent organic pollutants, such as perfluoroalkane sulfonates (PFSAs) and perfluorocarboxylic acids (PFCA). Herein, we demonstrated a hybrid electrocatalyst of Magnéli phase titanium oxide (Ti4O7)/Ti3C2Tx MXene for EAOP. The perfluorooctanoic acid (PFOA) degradation rate in batch tests by the Ti4O7/MXene electrode was 2.21×10-2 min-1, three times faster than that of the Ti4O7 electrode (0.76×10−2 min−1). This hybrid Ti4O7/MXene electrode significantly lowered the interfacial charge-transfer resistance from 54.36 Ω to 7.18 Ω compared with the Ti4O7 electrode. The Ti4O7/MXene electrode also exhibits excellent stability as tested by a 10 consecutive cycle for 30 h under a DC current of 10 mA·cm−2 and reached a stable PFAS degradation (98.1%–99.2%). Some degradation isomers and intermediates with lower fluorinated chain lengths were detected. In addition, density functional theory (DFT) calculations indicate a greater charge transfer and a lower adsorption energy for hydroxyl radical (•OH) on Ti4O7/MXene in comparison with the pristine Ti4O7, which would facilitate the diffusion of radicals and oxidative reactions with PFCAs. A standardized electric energy consumption per log removal of PFCAs (EE/O) was found to be only 8–14 kWh m−3, which is among the lowest level of the current literature data. The integration of these hybrid nanomaterials brings forth a unique synergy that holds the capacity to drive enhanced catalytic activity, thereby contributing significantly to the field's pursuit of efficient pollutant removal and environmental remediation.

 

This study is supported by the NSF-PFI Award 2016472, Seed Grant of the BGU-NJIT Institute for Future Technologies, New Jersey Water Resources Research Institute (award number: 2020NJ025B).



标题:Magnéli相Ti4O7掺杂MXene阳极电化学降解全氟羧酸

 

 

第一作者:马清泉

通讯作者:张文

通讯单位:新泽西理工学院

DOI: https://pubs.acs.org/doi/10.1021/acsestengg.3c00571

 

文章摘要新泽西理工大学土木与环境工程系张文教授课题组近期于ACS EST Engineering发表基础研究论文, 提出了一项关于提高电极氧化性能和稳定性能用于电化学氧化全氟羧酸的研究。电化学高级氧化被认为是根除持久性有机污染物最有希望的途径之一,比如全氟磺酸(PFSA)和全氟羧酸(PFCA)。该研究展示了一种Magnéli相Ti4O7掺杂MXene的电催化剂用于电化学高级氧化。在Ti4O7掺杂MXene作为电极的情况下,全氟辛酸(PFOA)的降解速率为2.21×10-2 min-1,比单独Ti4O7电极的速率(0.76×10−2 min−1)快三倍。与Ti4O7电极相比,这种杂化Ti4O7/MXene电极显著降低了界面电荷转移电阻,从54.36Ω降至7.18Ω。Ti4O7/MXene电极在10 mA·cm−2的电流下进行的10个连续周期测试表明,其表现出色,达到了稳定的PFAS降解(98.1%–99.2%)。此外,密度泛函理论(DFT)计算表明,与初始的Ti4O7相比,Ti4O7/MXene对羟基自由基(•OH)具有更大的电荷转移和更低的吸附能,这将有助于自由基的扩散和与PFCA的氧化反应。根据计算对PFCA的标准电能消耗(EE/O)仅为8–14 kWh m−3,位于当前文献数据的最低水平之一。这些杂化电极材料产生了独特的协同效应,具有推动增强催化活性的能力,从而有希望在高效污染物去除和环境修复领域做出重要贡献。该研究得到了NSF-PFI (award number: 2016472)项目、Seed Grant of the BGU-NJIT Institute for Future Technologies, New Jersey Water Resources Research Institute (award number: 2020NJ025B) 的支持。

 Wen's Research Group​

Electrooxidation of Perfluorocarboxylic Acids by Interfacially Engineered Magnéli Phase Titanium Oxide (Ti4O7) Electrode with MXene 

Explore the Nano World 

Wen Zhang, Ph.D., P.E., BCEE

Principal Investigator
Professor

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: