Wen Zhang, Ph.D., P.E., BCEE

Principal Investigator
Professor

Phone: (973) 596-5520 
Fax: (973) 596-5790
Email: wen.zhang@njit.edu

Office Location: Colton Hall 211

Find us on the map: 

Dr. Wen Zhang’s group at New Jersey Institute of Technology published a paper (DOI: https://pubs.acs.org/doi/full/10.1021/acsami.3c18227) in ACS applied materials & interfaces that employed a novel induction electromagnetic field  to excite nanocatalysts that are coated on air filters to enhance microbial inactivation and separation from air. The COVID-19 pandemic sparked public health concerns about transmission of airborne viruses. Current methods mainly capture pathogens without inactivation, leading to potential secondary pollution. Herein, this study evaluated the inactivation performance of a model viral species (MS2) in simulated bioaerosol by an electromagnetically enhanced air filtration system electromagnetic-assisted reactive air filtration system under a 300-kHz electromagnetic induction field.  A non-woven fabric filter was coated with a 2D catalyst, MXene (Ti3C2Tx), at a coating density of 4.56 mg∙cm-2 to absorb electromagnetic irradiation and produce local heating and induced electromagnetic field for microbial removal and inactivation. The results showed that the MXene-coated air filter significantly enhanced viral removal efficiency by achieving a log removal of 3.4±0.15 under an electromagnetic power density of 369 W∙cm-2. By contrast, the pristine filter without catalyst coating only garnered a log removal of 0.3±0.04. Induction field can efficiently penetrate the air filters (unlike UV light that primarily expose the surface with limited penetration) and enable rapid and stable thermal heating (e.g., 72.2±4 oC) of the MXene coated filter, stemming from inductive eddy currents at the interface of the MXene nanosheets, which results in potent germicidal effects. Besides, additional non-thermal effects (e.g., dielectrophoresis) on enhanced viral capture during electromagnetically enhanced filtration was investigated by COMSOL simulation to delineate the potential trajectories of bioaerosol. The results provide unique insights into the mechanisms of pathogen control and thus promote alternative solutions for preventing the transmission of airborne pathogens.

 This study was partially supported by EPA P3 grant (SV84041901), New Jersey Health Foundation Grants (Award#: PC 27-23 anda PC 55-23), NSF Molecular Separation (Award number: 2025374), NJIT Technology Innovation Translation and Acceleration (TITA) Seed Grant, and Undergraduate Research Innovation (URI) phase I and II grants at NJIT.

Revolutionizing Airborne Virus Defense: Electromagnetic MXene-Coated Air Filtration for Superior Aerosol Viral Removal

Explore the Nano World 

 Wen's Research Group​

标题:创新空气病毒防御:电磁MXene涂层空气过滤技术实现卓越的气溶胶病毒去除

 

 

第一作者:刘方洲

通讯作者:张文

通讯单位:新泽西理工学院

DOI: https://pubs.acs.org/doi/full/10.1021/acsami.3c18227

 

文章摘要新泽西理工学院的张文博士团队在ACS应用材料与界面上发表了一篇论文,利用一种新颖的感应电磁场来激发涂覆在空气滤膜上的纳米催化剂,以增强微生物的灭活和分离效果。COVID-19大流行引发了公众对空气传播病毒传播的担忧。当前的方法主要是捕获病原体而不进行灭活,可能导致二次污染。本研究评估了在300kHz电磁感应场下,电磁辅助反应性空气过滤系统对模拟生物气溶胶中模拟病毒物种(MS2)的灭活性能。2D催化剂MXene(Ti3C2Tx)被涂覆在无纺布滤膜表面,涂覆密度为4.56 mg∙cm-2,以吸收电磁辐射并产生局部加热和感应电磁场以进行微生物去除和灭活。结果表明,在369 W∙cm-2的电磁功率密度下,MXene涂层空气过滤器显著提高了病毒去除效率,实现了3.4±0.15的对数去除。相比之下,没有涂覆催化剂的原始过滤器仅实现了0.3±0.04的对数去除。感应电磁场能够有效地穿透空气过滤器(不像紫外线主要暴露于表面,穿透性有限),并使MXene涂层过滤膜迅速而稳定地产生热量(例如,72.2±4oC),这是由于MXene纳米片的界面处产生感应涡流,从而产生强效的杀菌效果。此外,COMSOL仿真研究了电磁增强过滤期间的额外非热效应(例如介电泳),以描绘生物气溶胶的潜在运动轨迹。结果为了解病原体控制机制提供了独特的见解,从而促进了防止空气传播病原体传播的替代解决方案。该研究得到了EPA P3 grant (SV84041901), New Jersey Health Foundation Grants (Award#: PC 27-23 and PC 55-23), NSF Molecular Separation (Award number: 2025374), NJIT Technology Innovation Translation and Acceleration (TITA) Seed Grant, and Undergraduate Research Innovation (URI) phase I and II grants at NJIT 的支持。